Highest vectors of representations (total 25) ; the vectors are over the primal subalgebra. | \(-g_{2}+g_{-10}\) | \(-g_{4}+g_{-8}\) | \(-g_{11}+g_{-14}\) | \(-g_{6}+g_{-7}\) | \(h_{1}\) | \(h_{3}\) | \(-g_{7}+g_{-6}\) | \(-g_{14}+g_{-11}\) | \(-g_{8}+g_{-4}\) | \(-g_{10}+g_{-2}\) | \(g_{13}\) | \(g_{18}\) | \(g_{23}\) | \(g_{9}\) | \(g_{15}\) | \(g_{20}\) | \(g_{5}\) | \(g_{16}\) | \(g_{24}\) | \(g_{21}\) | \(g_{17}\) | \(g_{12}\) | \(g_{25}\) | \(g_{22}\) | \(g_{19}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-\psi_{1}-\psi_{2}\) | \(-\psi_{2}\) | \(-\psi_{1}\) | \(\psi_{1}-\psi_{2}\) | \(0\) | \(0\) | \(-\psi_{1}+\psi_{2}\) | \(\psi_{1}\) | \(\psi_{2}\) | \(\psi_{1}+\psi_{2}\) | \(2\omega_{1}-2\psi_{2}\) | \(2\omega_{1}-\psi_{1}-\psi_{2}\) | \(2\omega_{1}-2\psi_{1}\) | \(2\omega_{1}-\psi_{2}\) | \(2\omega_{1}-\psi_{1}\) | \(2\omega_{1}+\psi_{1}-\psi_{2}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}-\psi_{1}+\psi_{2}\) | \(2\omega_{1}+\psi_{1}\) | \(2\omega_{1}+\psi_{2}\) | \(2\omega_{1}+2\psi_{1}\) | \(2\omega_{1}+\psi_{1}+\psi_{2}\) | \(2\omega_{1}+2\psi_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{-\psi_{1}-\psi_{2}} \) → (0, -1, -1) | \(\displaystyle V_{-\psi_{2}} \) → (0, 0, -1) | \(\displaystyle V_{-\psi_{1}} \) → (0, -1, 0) | \(\displaystyle V_{\psi_{1}-\psi_{2}} \) → (0, 1, -1) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{-\psi_{1}+\psi_{2}} \) → (0, -1, 1) | \(\displaystyle V_{\psi_{1}} \) → (0, 1, 0) | \(\displaystyle V_{\psi_{2}} \) → (0, 0, 1) | \(\displaystyle V_{\psi_{1}+\psi_{2}} \) → (0, 1, 1) | \(\displaystyle V_{2\omega_{1}-2\psi_{2}} \) → (2, 0, -2) | \(\displaystyle V_{2\omega_{1}-\psi_{1}-\psi_{2}} \) → (2, -1, -1) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}} \) → (2, -2, 0) | \(\displaystyle V_{2\omega_{1}-\psi_{2}} \) → (2, 0, -1) | \(\displaystyle V_{2\omega_{1}-\psi_{1}} \) → (2, -1, 0) | \(\displaystyle V_{2\omega_{1}+\psi_{1}-\psi_{2}} \) → (2, 1, -1) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}-\psi_{1}+\psi_{2}} \) → (2, -1, 1) | \(\displaystyle V_{2\omega_{1}+\psi_{1}} \) → (2, 1, 0) | \(\displaystyle V_{2\omega_{1}+\psi_{2}} \) → (2, 0, 1) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}} \) → (2, 2, 0) | \(\displaystyle V_{2\omega_{1}+\psi_{1}+\psi_{2}} \) → (2, 1, 1) | \(\displaystyle V_{2\omega_{1}+2\psi_{2}} \) → (2, 0, 2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | \(W_{17}\) | \(W_{18}\) | \(W_{19}\) | \(W_{20}\) | \(W_{21}\) | \(W_{22}\) | \(W_{23}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
|
|
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-\psi_{1}-\psi_{2}\) | \(-\psi_{2}\) | \(-\psi_{1}\) | \(\psi_{1}-\psi_{2}\) | \(0\) | \(-\psi_{1}+\psi_{2}\) | \(\psi_{1}\) | \(\psi_{2}\) | \(\psi_{1}+\psi_{2}\) | \(2\omega_{1}-2\psi_{2}\) \(-2\psi_{2}\) \(-2\omega_{1}-2\psi_{2}\) | \(2\omega_{1}-\psi_{1}-\psi_{2}\) \(-\psi_{1}-\psi_{2}\) \(-2\omega_{1}-\psi_{1}-\psi_{2}\) | \(2\omega_{1}-2\psi_{1}\) \(-2\psi_{1}\) \(-2\omega_{1}-2\psi_{1}\) | \(2\omega_{1}-\psi_{2}\) \(-\psi_{2}\) \(-2\omega_{1}-\psi_{2}\) | \(2\omega_{1}-\psi_{1}\) \(-\psi_{1}\) \(-2\omega_{1}-\psi_{1}\) | \(2\omega_{1}+\psi_{1}-\psi_{2}\) \(\psi_{1}-\psi_{2}\) \(-2\omega_{1}+\psi_{1}-\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}-\psi_{1}+\psi_{2}\) \(-\psi_{1}+\psi_{2}\) \(-2\omega_{1}-\psi_{1}+\psi_{2}\) | \(2\omega_{1}+\psi_{1}\) \(\psi_{1}\) \(-2\omega_{1}+\psi_{1}\) | \(2\omega_{1}+\psi_{2}\) \(\psi_{2}\) \(-2\omega_{1}+\psi_{2}\) | \(2\omega_{1}+2\psi_{1}\) \(2\psi_{1}\) \(-2\omega_{1}+2\psi_{1}\) | \(2\omega_{1}+\psi_{1}+\psi_{2}\) \(\psi_{1}+\psi_{2}\) \(-2\omega_{1}+\psi_{1}+\psi_{2}\) | \(2\omega_{1}+2\psi_{2}\) \(2\psi_{2}\) \(-2\omega_{1}+2\psi_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-\psi_{1}-\psi_{2}}\) | \(\displaystyle M_{-\psi_{2}}\) | \(\displaystyle M_{-\psi_{1}}\) | \(\displaystyle M_{\psi_{1}-\psi_{2}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{-\psi_{1}+\psi_{2}}\) | \(\displaystyle M_{\psi_{1}}\) | \(\displaystyle M_{\psi_{2}}\) | \(\displaystyle M_{\psi_{1}+\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{2}}\oplus M_{-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-\psi_{1}-\psi_{2}}\oplus M_{-\psi_{1}-\psi_{2}}\oplus M_{-2\omega_{1}-\psi_{1}-\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}-\psi_{2}}\oplus M_{-\psi_{2}}\oplus M_{-2\omega_{1}-\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-\psi_{1}}\oplus M_{-\psi_{1}}\oplus M_{-2\omega_{1}-\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}+\psi_{1}-\psi_{2}}\oplus M_{\psi_{1}-\psi_{2}}\oplus M_{-2\omega_{1}+\psi_{1}-\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}-\psi_{1}+\psi_{2}}\oplus M_{-\psi_{1}+\psi_{2}}\oplus M_{-2\omega_{1}-\psi_{1}+\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+\psi_{1}}\oplus M_{\psi_{1}}\oplus M_{-2\omega_{1}+\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}+\psi_{2}}\oplus M_{\psi_{2}}\oplus M_{-2\omega_{1}+\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}+\psi_{1}+\psi_{2}}\oplus M_{\psi_{1}+\psi_{2}}\oplus M_{-2\omega_{1}+\psi_{1}+\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{2}}\oplus M_{2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-\psi_{1}-\psi_{2}}\) | \(\displaystyle M_{-\psi_{2}}\) | \(\displaystyle M_{-\psi_{1}}\) | \(\displaystyle M_{\psi_{1}-\psi_{2}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{-\psi_{1}+\psi_{2}}\) | \(\displaystyle M_{\psi_{1}}\) | \(\displaystyle M_{\psi_{2}}\) | \(\displaystyle M_{\psi_{1}+\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{2}}\oplus M_{-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-\psi_{1}-\psi_{2}}\oplus M_{-\psi_{1}-\psi_{2}}\oplus M_{-2\omega_{1}-\psi_{1}-\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}-\psi_{2}}\oplus M_{-\psi_{2}}\oplus M_{-2\omega_{1}-\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-\psi_{1}}\oplus M_{-\psi_{1}}\oplus M_{-2\omega_{1}-\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}+\psi_{1}-\psi_{2}}\oplus M_{\psi_{1}-\psi_{2}}\oplus M_{-2\omega_{1}+\psi_{1}-\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}-\psi_{1}+\psi_{2}}\oplus M_{-\psi_{1}+\psi_{2}}\oplus M_{-2\omega_{1}-\psi_{1}+\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+\psi_{1}}\oplus M_{\psi_{1}}\oplus M_{-2\omega_{1}+\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}+\psi_{2}}\oplus M_{\psi_{2}}\oplus M_{-2\omega_{1}+\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}+\psi_{1}+\psi_{2}}\oplus M_{\psi_{1}+\psi_{2}}\oplus M_{-2\omega_{1}+\psi_{1}+\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{2}}\oplus M_{2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{2}}\) |
2\\ |